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Models for Visual Cortex

Abstract

Observations of developmental plasticity in the visual cortex of cats have inspired a

number of theoretical models. These models attempt to mimic the development of response

specificity. We review the assumptions upon which one can build models of the visual cortex.

The anatomical layout usually consists of excitatory afference from the lateral geniculate

nucleus, with intracortical inhibition among a population of cells. The degrees of convergence

- of the afference and divergence of the inhibition are some of the more important considera-

tions which distinguish different models. Synaptic modification rules lie at the heart of these

theories. Modification is usually of the lebbian type, with synaptic strengths changing as

some function of the product of pre- and post-synaptic activity. A successful model not only

alters synapses to generate specificity in single units, but simultaneously produces a cortical

network which is stable and which mimics the behavior of experimental populations.
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Models for Visual Cortex

Introduction

In this second of a series of papers, we provide the modeling details of a study in neural

development: accounting for the organization of orientation selectivity and ocular dominance

in neurons of kitten visual cortex. In the first paper 26 we offered a general introduction to

modeling, including a guide to simulation techniques and error analysis, and a review of CAE

software packages adaptable for neural modeling.

By visual cortex (VC), we mean kitten primary visual cortex, area 17 or V1. We do not

consider extra-striate cortex here, or even differences between cat and primate. We first

review some pertinent features of receptive field development, and then review area 17 models

which use the anatomical layout to account for RF features, incor)orating syna)tic excitation

and inhibition. Then we show how to model synaptic modification, necessary to explain plas-

tic changes during development.

1. Visual response specificity in kitten and adult cat neurons.

Researchers commonly illustrate specificity or selectivity by the abstraction of a tuning

curve, in which the response is small outside of a narrow range of preferred stimuli. In the

cat, VC' specificity is found over the dimensions of

* receptive field (HF) position,

* stimulus orientation,

* spatial frequency,

* length

* stimulus velocity,

6 4
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Models for Visual Cortex

* ocular dominance,

. binocular disparity.

As a particularly good example of specificity, we show in Figure 1 a disparity tuning curve

from a cat VC cell.

There are several recent reviews of kitten visual cortex development 24,3 9 ,68 ,99 which the

interested reader may consult for details beyond the information presented here.

Since we are interested in modeling development. of responses in kittens, we must ask:

How do visually naive kittens and adult cats differ in VC specificity? Although this is an area

of active research, and there are a number of controversies about the degree of difference, it

can be said with some conviction that kitten neurons lack much of the adult, selectivity. To

take the example of orientation selectivity, a number of quantitative studies have shown that,

only a low percentage of cells sampled in kittens have the selectivity for orientation seen in a

majority of adult neurons'11 '14 ' 5 37 ' 0 8  Many cells in kitten VC respond aspecifically to all

stimulus orientations and have large RF's with poorly defined boundaries. The responses may

be sluggish -- with few spikes per presentation and fatigue after repeated stimuli. With

reward to ocular dominance (OD) immature cells usually respond well to stimuli through

either eye, and often show mild facilitation when tested simultaneously through both eyes.

Sele ,ivit N for binocular disparity is not evident in immature neurons 8 .

In contrast, VC cells recorded in adult cats, or even kittens with several weeks of normal

visual experience, are almost all selective for a single orientation, and direction of stimulus

movement, and have vigorous responses to these optimal stimuli (while maintaining a precise

plotting of RI" boundaries. As a group, th(,se cells are usually binocula r, but single cells occ(a-

C%
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Models for Visual Cortex

sionally prefer one eye or the other"1 . The RFs for the two eyes are similar, but may be

shifted relative to each other for detection of near or far images 18 '72'73 . The broad binocular

facilitation seen in kitten neurons is replaced by narrow facilitation plus suppression at

disparities neighboring the optimal depth.

Now the modeler knows the initial conditions and the normal end result of VC develop-

ment. Next, consider what conditions influence the time course of normal and abnormal

development.

First note that if VC neurons are to develop or maintain any selectivity, then the kitten

requires some visual experience. Total visual deprivation (rearing in absolute darkness) results

in virtually no orientation selectivity after the age of about eight weeksi 7S ' i 3  It should

be appreciated that even with dark rearing, the afferent axons to visual cortex have some

maintained discharge. It is possible, with enucleation or tetrodotoxin, to eliminate this "non-

visual" input, too3 8 .55.105

Now let us list a number of abnormal visual environments which cause VC neurons to

develop differently from normal.

e Temporary monocular deprivation leads to permanent ocular dominance (OD) shift, after

which ahnost all cells give no response to the deprived eye' 12 .

llestricting the visual world to contours of a single orientation skews the (list ribut ionI of

orientation preferences toward the experienced pattern 10 '23,18,I0,81 101

9 Liniting rision to one direction of motion biases VC cells to resl)ond pre('ferentially to hat

(Ii rec t io n ' 'q ' S ' O

K Kittens raised viewing sinfl (lot s levelop cells with normal I F size, but preferece' for

.0.



Models for Visual Cortex

unusually small spots within the RF 79'1 °

* If kittens grow up in low temporal frequency strobe light, cortical neurons lose direction-

selectivity .'2 22,-7, 74.

o w'ing prisms to deviate the image in one eye relative to the other results in a compensatory

,.. shift in binocular receptive field disparity 0 '9 1 .

2. Outline of the Model

These results suggest the following theory.

At birth, each VC neuron is synaptically connected to enough afferent input so

that a neuron can respond weakly to a great many stimulus arrangements. That

subset of afferents which carries information during repeated presentation of

stimuli finds its synapses strengthened, while the complement of that active subset

finds its synapses weakened. By this use-disuse mechanism, the cell develops a

re-ponse to only a selective set of stimulus patterns.

Modelling this sketchy, qualitative idea presents some difficulties. \V e need first to

specify initial conditions, both anatomical and physiological, then to describe how a cell forms

a single output from many inputs, then to express a rule by which inputs may have their

influences changed, and finally, to show how this dynamic system with many cells can be

stable over time.

3. Wiring Diagram for the Model

7
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Models for Visual Cortex

Four structures of the vertebrate CNS have been the favorite subjects of neuro-

anatomists over the last century - retina, spinal cord, cerebellum, and neocortex87 . The first

three of these have a limited number of cell types and a constrained set of connections

between the cells. The neocortex, however, has a great. diversity of cell types and a rich set

of inter-connections. See Figure 2. In considering how nerve cells of the retino-geniculate

pathway are interconnected, the modeler has an embarrassment of riches.

For area 17, visual input comes principally from the lateral geniculate nucleus (ULN).

with relatively minor inputs from the pulvinar and the claustruni 83. The dorsal LGN is

divided into layers, physiologically defined by ocular dominance. Each layer contains cells

excitable through one eye only. Inhibitory influences from the oth, - eye can be demon-

strated, however 8  . Geniculate units show biases for the orientation of a I ovingslit 2 '' 2 .

These biases, however, fall far short of the narrow tuning seen in cortical neurons. Nlodelers

generally assume, therefore, that the input to visual cortex has neither orientation

selectivity nor binocularity.

As documented by Mountcastle66, and Hubel & WViesel 51, neocortex has a columnar

organization. Cells recorded in a penetration perpendicular to the cortical surface have simi-

Jar orientiation )references andi ocular dominance (although cells outside of layer IN' are gen-

erally binocular).

In al(dition to the specific afferents from t halamus, there are wi(lesl)read non- visual

inp)Uts to V(: a noradrenergic projection from the locus coerulcus, a cholinergic from basal

nucleus, and a ser()t on ergic from ra ph e7

*- 8 ° " . " " . " . t . " ° . " o J ' ,= " -"""""•"- •"•"° % , ' ' % a
o
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Models for Visual Cortex

The wiring scheme for VC models consists of excitatory afference from LGN combined

with intracortical inhibition. Intracortical excitation has been added in some models for two

main purposes: to tighten columnar organization, and to pass the signal up through the

hierarchy. In order to model the columnar organization of cortex described above (see Figure

7), Malsburg62, Swindale 06 , and others have studied networks with short-range excitatory

intracortical connections and longer-range inhibitory interactions. Sillitoq7 proposed a role for

intracortical excitation in providing a baseline facilitation. Excitatory projections between

cortical layers or areas can create reverberating circuits or hierarchical structures.

Fukushima 4° has worked with abstract feature-extracting systerns of several levels. Such net-

works, when plasticity is involved, present special problems5 '8 1 . One way to deal with this

complexity, is to utilize the technique of supervised learning. Assume the desired outl)ut is

available to produce an error signal between the actual response and the goal, then synaptic

modificat ions in a lower layer, based on the error signal from a higher layer provides the

necessary control. Even so, sending error signals back over more than three layers can be

costl, comput at ionally.

Can we correlate cell types from anatomical study with components in our model circuit?

In visual cortex, there are a few relationships established at the single-neuron level. Which

cell types and synapses provide inhibitory and excitatory outputs can he reasonably guessed,

but response properties cannot he predicted from morphology. One can assign inhibitory and

excitat orv mod(,1 elements to smooth and spinous stellate cells respectively8 r or focus on

basket cells as p)owerful inhibitory elements Daniels 2g. Attempts to account fo)r tie role of

each type of cortical cell remain specufat ivOe3

g
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Models for Visual Cortex

It is the first task of the modleler to decide which aspects of thiis richi (and sonIUC\ hat

poorly understood) structure are essential for a successful wiring diagrami of the miodel.

Before solving this problem,. hiowever, the modeler must consider whichl connect ions are exe:-

talory, whiichi are inhibitory, and how to integrate these inputs to produce responses to vistial

st iniuli.

4. Excitation and Inhibition

Excit at ion in VC comesvia 3 1

* the specific thialamic afferents.

* spiny stellate interneurons,

* *0 collaterals of local p)yramidal neurons,

* hiorizontal fil)ers in layer I,

& association fibecrs and commisu ral fi hers emanating from distant cortical pyramnidal cells,

wnon-sp~ecific sub~cort ical afferents71.

Thie majority of VC cells receive monosynapt ic excitation from LGN, especially cells bevlow

layer 10-.

IniJI it ion, on tHie othier haind, comes al most exclusively from local intern eurn,3 and (

from n on-specific a fleren ts. Tlie sm~oothi st ella te cells are usuially rega rdled as lprov~id in g in lI ii-

tory out puts; thiese cells include basiket cells, axoaxonic cells, axonal tuft cells., and( (lle

b( iiquiet eel Is' . GAHA~. is 1 rlm hlv thie t ra nsmiitt er for tIi ese nienron" 82, and tIi ei r ,y imap,-es are

loea.t e(l ofl (it her t he initial segC3-inl an p11lerik aryon , or tHie diendlnt ic tree of pv ra Inida I

-ellk 102. Two tyVpes of GAI3A recepto~rs Ii ve been (list H n1I islied , and h)ot1 i hca liz a h a11(1 

10



Models for Visual Cortex

fun' i n : ipp :ir dit iIn t for t I ,,e reeptors 3a'_,

1 \ Cx ('ili i.we will generally miean inonsynaptic afferent excitation; inhibition will

alkkvi- , p i v-,iapti' fron I,(;N. This intracortical inhibition is sometimes seen as simply

an inver i (,,f the -ign of the :ifl',rent input (e.g. ref. 115), but it should be regarded as an

interacti( n bethrern cortical cells since Inhil)itory cells in 'C have selective RFs6 ' , rather than

aslpecifie L(;N-ty p fields.

There iv a ,t rum of tlioudht on the relative importance to VC specificity of excitatory

and inhilitory ieclih isins. iluill and \Viesel" t relied on excitation to illustrate how their

(at :a on oriented I P Vs could be deri ved. Sillito 98 argued that inhibition generates these same

P12 pr(perties. lPetN(en these extreiies, various in t eractions l)etween tle two types of in pts

have been prposed.

Figure :1 repre-ent., these alten:itutives in terms of tuning curves for the excitatory and

inhibit ory in ils In, a ell. N lodel., which emphasize excitation assime that selectivity arises

through timing the excitatory drive to the cell, with a relatively flat tuning curve for inhibi-

tion. libel and \Viese ' 1 siigge.tel t hat the sI)atial respolise l)roperties of VC cortical cells

are buill up hi era rchi,all v fr,,ii I(iiat,,rv con rgence via non-selective IGN cells. They

)rool)sed iat a fir !t ord er orient:l iut-selective (. urt ical (cell (simple cell) receives excitatory

inputs from cent er-surr(ondI I (;N (,,ls (5 itse centers wvere offset, but aligned along the long

axis of the pref,rred orientation (liiure .1). Simil:irly. ocular (ldomini ne an result from the

relative strength of the exitatoyrv Iil ul of each eve. llubel and \icel proposed that a set of

simple cells preferring a ('iiMiin (ori,,nt:it in exi,Id sc n id clniss of neurons (complex cells),

con1ferring their ori,ntiin >,,,leetixi v xluhile generalimig over :a larger 1?I'. Subsequent

w(ork" t showed 1hat. bN :1iid lare iiple cel ar, stelalte mid c(',mplhx cells l)yramidal.

4'.
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Models for Visual Cortex

supporting Hubel and Wiesel's model.

Most models try to take this simple excitatory arrangement as far as possible before

introducing inhibitory factors. Malsburg's model62 for development, of orientation-sensitive

cells features a hexagonal lattice of input elements. The elements are the centers of LGN

receptive fields. His stimuli are bars which excited the central element in the lattice, and

several elements on each side (Figure 5a). The cortical cells develop preferences for oriented

stimuli by strengthening the connections from a set of aligned elements, resulting in the

arrangement suggested by Hubel S Wiesel (Figure 5b).

Bienenstock et al.7 , started with inputs generated by bars overlapping elements on a lat-

* tice (Figure 6). Strong excitatory connections from one of these oriented inputs come to dom-

nate a VC cell, thereby determining the cell's optimal orientation.

Each of these models follows the pattern of figure 3a, where the excitatory connections

are organized essentially in the form of the preferred input. Each model also implements an

additional input which enhanced selectivity to a relatively minor degree, through inhibition of

non-optimal patterns.

Malsburg combined intracortical interactions of short-range excitation and Ionger-range

inhibition (see Figure 7). This led to a spatial organization of the cortical layers in which

neighboring cells developed preference for similar orientations. Malsburg's long-range inhil)i-

tion brought dissimilar patterns into opposition. Suppression of nonoptimal l)atternms through

inhibition was also used by Bienenstock et al. 7 to sharpIen orientation selectivity. Excitatory

convergence produced the basic orientation tuning while inhibition suppressed reinmnao

responses to non-preferred patterns, essentially by raising the threshold. This overall

12
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Models for Visual Cortex

approach implies that excitation is the primary carrier of selectivity information, and that

inhibition is used secondarily to improve tuning, and perhaps add a stabilizing influence.

Others have considered the opposite relationship between excitation and inhibition: that

most of the selectivity is achieved by inhibition of all but the optimal pattern, and that excita-

tion merely provides a background to be inhibited (Figure 3c). Creutzfeldt et al.' ° pointed

out that an orientation-sensitive cortical cell might receive excitation from a single LGN

afferent t7 57 ' 5, and if so, then it should show no selectivity were it not for the influence of an

asymmetrical intracortical inhibition. Heggelund & Moors4 6 proposed that oriented RF's

result from two circularly symmetric inputs whose centers are slightly offset, one of which is

inhibitory and the other excitatory (Figure 8a). Braitenberg13 extended that arrangement to

produce a tuo-dimensional sheet of orientation-selective cells. Sillito97 proposed further ela-

borations of Ileggelund's scheme (Figure 8b) using several stages of inhibition. Barlow & Lev-

ick' and l lassenstein k Reichardt14 provided experimental evidence that direction-selectivity

in retinal neurons is due to asymmetric inhibition. Cortical direction selectivity depends simi-

larly on inhibition3 's ' ' . DeValois & Tootell ° noted an asymmetric inhibition in spatial

frequency tuning. finding inhibition from harmonics of the best frequency. Furthermore,

1-hbel and Wiesel's strict, hierarchical model of excitatory convergence from LGN to simple

cells to complex cells has been called into question by a number of results sho\ ing, for exam-

pe, that complex cells receive monosynaptic inpt from GN5'.67 an( resp l t ise ', il i

which fail to excite simple cells 44 . The evidence for a conlplete correlation beltveen ii t,

stellateipyrainidal and simpie/coniplex classifications has also been wv,:ikened2 't3,6X.

Sillito has argued most strenrotlslv for the alternative illistrated iri Figure 3c. lie

". observed the ex'italorv tuning curve after applying iontophorl ically Ihe (,'AR\ anltagonist

13
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Models for Visual Cortex

bicuculline "... 1°.. During bicuculline application, normally sharply tuned cells lose all selec-

tivityg5. Based on his own data, as well as other evidence, Sillito concluded that the excita-

tory input from LGN has a flat tuning curve, while the intracortical inhibition is highly

organized. He proposed that inhibition "...is optimally effective at orientations away from the

preferred optimum and hence serves to generate selectivity to that optimum" (101, page 109).

Sillito places intracortical (not afferent) excitation as an important but secondary agent in

generating RF properties.

We suggest that both excitation and inhibition contribute to response properties. In this

compromise view, both excitation and inhibiton are tuned around a common optimum (Figure

3b). Blakemore and Tobin8 found examples of VC neurons which were inhibited most

effectively by gratings parallel to the cells' preferred orientations. From intracellular record-

ings Ferster35" proluced orientation tuning curves of the type in Figure 3b. AIlman et al.2

have recently reviewed the common occurrence of extensive input from outside the classical

excitatory HF, and discuss the evidence that inhibition is tuned to match the response proper-

ties of IC cells.

This comtpromise alternative can support a range of possibilities: it could allow excita-

tion to be broadlNv tuned, since broadly tuned inhibition would effectively eliminate responses

% to non-optinial stimuli. On the other hand, excitation and inhi bition r(omild both show sharp

tuning. Either wav, the difference between this comlpromise situation (Figure .31)) as opposed

to the extremes (Figure 3a or .3c) is that here, excitation and inhi bition are tuned in concert

with each other an ( with the resultant response.

Different response dimensions undoubtedly draw on varying mixtures of excitation and

inhibition. Ocular dominance probably depends primarily on the balance of excitatory inputs

14
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Models for Visual Cortex

from the two eyes, whereas directionality and binocular disparity probably require inhibition

to generate sharp tuning; orientation, spatial position, and spatial frequency specificity prob-

ably benefit from equal combinations of inhibition and excitation.

5. Synaptic Modification Rules

Once a reasonable wiring diagram is in place, and connections are labelled as excitatory

or inhibitory, a rule for changing connection strengths is needed, in order to see simulated

development. In some cases, the initial wiring is assumed to have excess connections, result-

ing in little specificity. Synaptic modification then eliminates certain connections. Sometimes

a mild topological constraint is imposed on the diffuse initial state: cells, including afferent

axons, make synapses with neighboring cells, rather than with the entire network. An initial

bias in the wiring is necessary in Malsburg's systems65 r' because a seed for further organiza-

tion is needed. Fluctuations from noisy input are sufficient to break the initial symmetry and

achieve highly asymmetric final states in Bienenstock et. a17.

Various combinations of modifiable and non-modifiable synapses have been employed.

Each of the alternatives discussed above and illustrated in Figure 3 corresponds to a decision

about how to modify excitatory and inhibitory synapses. Both MalsburgM5 and Scofield" used

fixed intracortical synapses and modified only the thalamocortical excitatory synapses. Their

results are of the type in Figure 3a. Nagano & Kurata 73 modeled the development of com-

plex cells using fixed excitatory synapses from LGN and modifiable inhibitory connections

from siml)le cells, giving the sort of inputs described by Figure 3c. The natural assumption

to make to obtain the results of Figure 3c, or even Figure 3a, is that active inhibitory

synapses are weakened and inactive inhibitory synapses are strengthened. This assumption

15
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Models for Visual Cortex

facilitates responses to experienced stimuli7'62 '7 °. In order to arrive at the inhibitory tuning

curve of Figure 3b, one can assume that inhibitory synapses that are active are strengthened,

* just as for excitatory synapses. Wilson hI8 modified intracortical inhibitory synapses in this

manner, although in his "anatomy", he separated the inhibitory cortical cells from the output.

cells, essentially reducing the inhibition to a "retinal afference". Saul 89 modifed both excita-

tory afference and true intracortical inhibition, showing how VC cells can develop specificity

dependent on both excitation and inhibition.

Rules for synaptic modification span a broad range: see Table I. Iebb46 postulated that

learning involved an increase in the synaptic efficacy between two cells which were simultane-

ously active. His rule encodes into the synapse the correlation between pre- and postsynaptic

activity [eqn A of Table I1. Many others have started with Hebb's rule to create different

modifiable synapses.

StentI0 6 not only suggested the applicability of Hebbian modification to the visual sy -

* tem, but, also proposed a specific (though speculative) physiological mechanism: The "ejec-

tion" of neurotransmitter receptors from the postsynaptic membrane during the polarity

reversals which accompany cell firing, unless local synaptic activity stabilizes the receptors by

holding the membrane potential below zero. In Stent's model, activity in the postsynaptic

cell during inactivity of the presynaptic terminal results in decreasing the strength of the

synal)se.

In order to increase the strength of a synapse, the rule can unuifo>rmly strengthen (with

low gain) all synapses on the p)ost.syniptic cell. In this case, inactive sy'n apses lose a lot, but

ad(l only a little, while active synapses strengthen slightly. By this means, the modification

of Figure 9a and equation 3 is obtained. This scheme implies that no (hange occurs in the

18



Models for Visual Cortex

absence of postsynaptic firing, and is sometimes referred to as postsynaptic resonance8 3.

Stent's mechanism could also be applied to inhibitory synapses (since ipsps would cer-

tainly prevent local polarity reversals), where the modifications turn out to be identical to

those for excitatory synapses (as in 32, 89, 118; see eqns C, D, M). This generates the tuning

curve in Figure 3b.

Von der Malsburg 65 modified his excitatory afferent synapses according to Hebb's rule.

Concurrent activity in the ith LGN cell ( xi= 0) and the kth cortical cell (Yk# 0) induces a

change in the connection strength ASik h xi Yk. To be able to decrease strengths, he nor-

malized the connections onto a given cortical cell to result in a constant sum of all their

strengths. Von der Malsburg therefore obtained the modification "tabhl" of Figure 9a (and

equation E), as in the Stent-type model. Perez et al. 8" followed a similar l)rocedure (equation

F), strengthening by the Hebb rule, followed by weakening due to conservation of total

synaptic strength.

Amari k Takeuchi 3 also follow Hebb, but build an exponential decay terin into their

modification rule (Figure 9b and eqn G of the Table). In this schenie, strong synapses always

decay, setting their level at the product of pre- and postsynal)tic activity. Such a rule is

more amenable to analysis than others, which must be .imulated. (t.7llmanin k Schecht man 113

and Easton k Gordon3 2 use similar rules for ease of analysis e(l ations I*, L,, and M.) They

also proposed a variant with the property of postsynaptic resonance, shown in Figure 9a and

eqn II. Identical rules were aplplied to excitatory and inhibitory synalpses. They used a single

inhil)itory input of given a l)liitude, so their inhibit ory modificati(ns ,imlply )rovided a

threshold-setting parameter to separate categories of patterns coming in through the excita-

17
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tory inputs.

In their model for the development of directional selectivity, Nagano & Fujiwara 72

assumed that active inhibitory synapses weakened as in Figure 9c and eqn I. Their model

produces directional preference in the absence of other features, and it is able to reproduce

visual deprivation-experiment results in which either all cells preferred a single experienced

direction or no cells showed directionality. They assume that a cortical cell completely inhi-

bits (vetoes) its neighbors. The modification rule permits movement in the preferred direc-

tion to eliminate the inhibitory block, which remains for movement in the null direction (as in

Figure 3c). Note that this modification scheme is explicitly time-dependent. Any of the other

above equations can be made to depend similarly on delays betu,een pre- and post-synaptic

firing.

Bienenrstock et at.7 used a more complicated learning rule. They replaced the postsynap-
I.

,-. tic factor in the simple Ilebbian l)ro(luct (eqn A) by a nonlinear function of both the post-
-

synaptic firing and a modification threshold (which is in turn a function of past l)ostsynaptic

activity, eqn .f). The form of this function weakens synapses when postsynaptic response is

small and strengthens them when resl)onses are large relative to the modification threshold.

The modification tal)le is shown in Figure Od, although the actual behavior of equation J is

much richer Ihan itis caricature since the nmidificat ion threshold adapts to the cell's activity,

as will he (li.cuss.ed thlw. The mo)(lification rule (hoes not assume postsynaptic resonaice,

but it has a pres iiynal)tic resonance built in, as well as an implied need for some postsynaptic

activity to raise the mod ifi cation thrsh(lId I inuenst ock et al.7 applied this rule to a bipolar

synapse N hich could range thrtoigh n ,g iv , anid po()sjlive influences, which means that the
'.

mo(lificati(on counlI rcr er-se .sign as in I'igure Oe %%hen the synapse passed from excitat ory to

18
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inhibitory. Scofield0 ° separated the bipolar synapse into excitatory and inhibitory parts and

chose to modify only excitatory synapses, applying the same rule (equation J). Analysis

shows that the two key reasons this rule reproduces some of the classic deprivation results are

(1) the competition induced by the positive and negative regions of the 6 -function and (2)

the stabilization produced by pushing the positive region ahead of the average activity of the

cell. This will be discussed in detail in the next section.

Non-Ilebbian rules have also been applied to visual cortical modeling. Lara & Di

Prisco5 9 modeled inter)cular competition during development by assuming that pre-synaptic

processes such as post-tetanic potentiation and heterosynaptic inhibition and sensitization

have prime importance. Although they included a regulatory influence from the post-synaptic

activity, their mechanisms were not related to correlations between pre- and pgstsynaptic ele-

ments. bad depended on competition and cooperation only between pre-synaptic fibers. Swin-
0(hlenn1 and Nalsburg 6  obtained similar results for the development of ocular dominance

stripes, wit hout resorting to such a detailed mechanism.

6. Stability of the Selective State

Tlhre are a numel),r of different stability )roblems inherent in det'lopmental specificity

models. The kev feature of almost all these models, however, is thlt states which represent

selectivity are stable. In1 ant hropocentric terms, selvc 'iviilV mienas thant a cell "decides"

wht her to fire based on "knowlelge'" of which )articllar inputs :are firing. and can the refore

"mnake (lecision," about changing its state. In vector termis, most mC)dicalion rules move the

synaptic stale (the vector of synapses) p:rallel IC soenic ipt vector until the state nears the

eqiiilihriim point corresponling to specificity for tha tiinihis. .\s this steadly state is

.~~~~ ~ . . .. . .. 2
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approached, the modification rule becomes dominated by the decay toward the selective state.

Amari k Takeuchi3 provided an elegant demonstration of this result. The steady state of

equation G is the average over the input patterns weighted by the cell's responses to the pat-

terns. Visual experience gives synapses a chance to find this state by averaging over time.

The decay term ensures that any transient perturbations are attenuated.

Hebb's postulate is often seen as permitting only increases in synaptic efficacy in

response to positively correlated activity. Such increases cannot continue unbounded.

Malsburg 65 and Perez et al.80 simply normalized their synaptic strengths to conserve the

total strength onto a cell. This normalization provides both a decrenienting process and a

bound on synaptic strength. Their normalization is instanlaneous, but the desired results can

be obtained more realistically by combining a fast Ilebbian process with a slow% asymptotic

approach toward a constant sum (eqn B). The physiological bases for conservation rules are

finite avaibilitv of transmitter and limited number of post-synal)tic receptors. Because of

enzym( kineiics, it seems reasonable to postulate a slow change in transmitter and receptor

dist ribiitions. Whn placed in a model, these slow processes can produce an apparent consoli-

dation period between experience itself and the final synaptic strengths wrought by that

experience IFor experimental support, see 16, 79; but see 37 for the op)posite result'. In

WVilso-n's sastem 118, a synaptic conservation hypothesis helped account for l)sych oph. sical

data on adaptation to low spatial frequencies. In another point of view, Cro sslber:g I, ;,

argued that a simple shunting-type adla)tation can rei)lace conserv ation rulis, by wwhith lie

neant siiply that the conscr\ation rule can be shifted to the presyvn:aptic lay er, since strong

inputs from one presynal)tic cell Nill reduce the activity in other presynaptic cells using

lateral inhibiliou.

20
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Cooper's model' relies on the posts ynaptic activity in order to achieve stability. The

form of the 0 -function in eqn J is chosen so that the synaptic weights converge to appropri-

ate values as long as the input environment is stable (in the sense of being a stationary sto-

chiastic process-- c.f. ref. 6). The essence of the 0 -function's role in stability is that the

miodification threshold, which separates the weakeniii- and st rengthlen ing zones, adapts to the

cell's activity in the following manner: 6e\ eventually rises above all responses except the

response to a single op~timal pattern. This optimal pattern produices imp~roved responses

because the associated 6 is positive, whereas 0 is negative for other p~atterns, leading to

reduced resp~onsiveness to those non-optimal patterns. Once thiese non-preferred p~atterns

- coe topro~uce o reponse at all, the modification threshold catches up to the opt imnal p~at-

tern response so that (5 is zero for all patterns. Tfhe negative slope of 0) at zero responsei st a-

bilizes the non-optimal pat terns-, while the pot entially umnst able positive slope at the preferred(

pattern's steady-state response finds the modification threshold v-arying mo re quickly in the

saiMe dIirect ion as t he response. At the st eadv state, this ad :ljt at ion effect doinat es l' ImS in g

- the 0 -funr't ion back toward zero (Figure 10).

4 Suppose a model mo ves to a stalble state (luringf e\postire to :t p:irl icimlzir enviruniru

What will l:ppemi if thle environmeont chmnges? (Cow'ider the rve~-utuig J:rihgu

whiere a fo rmierly c l()scd eve 1k (qwEifl. and the other v~ec~. 'll till III 11w (.1-11 1(.:

period. An O1) -hift to\%:ird tl~ l1w -o e e eve 1', .- ,11 ( F m 11) \\'(, (-:I r-,:ird tIlI

reeralasa breakdoirn of .h4bdty. We Owen rnw-ili;r-umit-th Ii, I i k 4 r,\ 1 ii :it; e~i(r

age(s (i d to i-'rauls:ihfi 1\ aiffo-r l ' j(- * w

iii t hev rvf ( - '-iit ire m-\ nirm.%11(1 iii . * Tr - I
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environment stability is often unable to handle drastic change in the stimulus environment,

and in models such as Bienenstock et al.7 there is nothing to stop another complete shirt.

Instead of relying on intrinsic stability therefore, one may have to use an outside gating of

plasticity, as has been suggested by various experiments (17, 36, 53, 103, 10-4). Detailed

models for external gatin, have niot been published, but, we should expect that signals derived

from the state of Ni sual cortex should inform the gat ing mechanism so that p~lasticityv is

reduced at, the appropriate time, i.e. w~hen specificity has been achieved. In what form tis

global regulator of plasticity arrives at the local visual cortical mechanisms is riot clear,

'.4. although this is an active area of research"1 . The next generation of modeling efforts must

include global control mechanisms to niodulate local synaptic strengths.

Summary

W~e review models for development of selectivity in kitten visual cortex neu ronis. The

modlels rely onl an underst andling of thle afferent connections to VC'. and onl t he intrinsic con-

* nections bet ween layers in cortical columins. Excitatory and inhibitory labels are placed on the

* d~~~oll liec ions iii thle mnodel's st ruct ure. Mod ificat ion rules for some of tihe syniapses allow tihe

ni( )d(' svyt 'llis to cli ige (d1eve('101) ii response to a visuial environmbent . The clha nges st abiIi ze

oni states wkI ih rep rcs('rit sclerlirily in) single-u iiit resp~onses. provid ed the d v isualI env irolnment

it,,]f ha:s niot changed gr(':ilv during the (levelopinent.
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Table I -- Modification Equations

xi  i-t.h retinal/geniculate cell activity

Yk k-th cortical cell activity

Sik weight of excitatory connection from cell i to cell k

qIk weight of inhibitory connection from cell I to cell k

s ds//dt, A s sn - sn-I

A) liebb-16 (excitatory): ASik = hxi Yk,

h is a time constant giving learning rate.

cs  N

B) Saui 9(excitatory): sik - hs (1-xi) Yk Sik + c S

h. and c, are time constants, N is the number of retinal cells projecting to cortical cell

k, Sok is the constant sum of synaptic strength onto cell k, and 0 x i, Yk< 1.

S 1cq M

C) Saul89 (Inhibitory): 'Ik - hq (1- Y) Yk qIk + * (q0 k - E qhk),
h=- I

analogous to B) but for intracortical inhibition.

t

D) \\'ils(o118 (inhibitory): AqIk (t) = \ f h(t- r) Yl (r) Yk (7) dr.
.4 0

the kernel h monotonicilly decreases toward zero: h(tX)--e , X a constant.

E) .N iasbi rg6 ' (excitatory): -Sik " Xi Yk -(0-) Sik, h ii a time cons, t ill)

N
s i (ESjk + hxj Yk),

I j:- I
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Sok is the constant sum as in B.

F) Perez etal8 ° (excitatory): Sik = hxi Yk " " (I-xi) Sik,

N N
I =-h N xj Yk/ L (1-xj) Sjk.

j=1 j=1

G) Amari and Takeuchi 3 (excitatory): Sik = "aSik + hxi Yk,

a, h are time constants, Yk C {0, 1}.

H) Amari and Takeuchi 3 (excitatory): Sik (-a Sik + lXi) Yk,

a. h as in G.

I) Nagano and Fujiwara' 2 (inhibitory): A/lk (t) = (a - hxi (t-2)) Yk (t),

xi and Yk functions of (discrete) time, a, h positive time constants, 0< xm _ xi _

Xmax vhen cell i is excited, xi =0 otherwise, and a - hxmin <0.

J) Bienenstock etal.7 (excitatory and inhibitory): Sik (yk, eNO) Xi,

. a particular function of Yk and EM with EM being a modification threshold which is

a function of Y'k, a running time average of Yk -- see Figure 10.

1K) Ullnian and Shechltman1 ' (excilatory): .sik 2 hi( - Sik xi) h(a - Y01

n a constant norn, h a time conswtant.

1) Easton and Cordon12 (excitalory): sik hs Xi Yk -Sik)

h. a time (comIMant.

M ) la': ton and C;ordon (inhibitorry): ('Ilk 1" ('k-  (Ikk),

"o 38
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hq a time constant.

iq
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Figure 1. Binocular disparity tuning curve from a cat VC simple cell, from Nelson et al. 1977, reproducea
with permission. This cell is sharply tuned, responding over about 1 a of retinal disparity. The 0 0 reference
is somewhat arbitrary. Misalignment of the two retinal images from their optimal positions leads to sup-
pression of the response below the level of the monocular responses. The dashed line shows the response
to the left eye stimulus alone, which was fixed for this curve. The right eye stimulus was advanced or delayed
from its optimal position. The short continuous line shows the sum of the monocular responses at the op-
timal positions. Binocular stimulation thus produces facilitation over a narrow range of disparities.
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Table 1. Modification Equations

x. = i-th retinal/geniculate cell activity
y, = k-th cortical cell activity

s.. = weight of excitatory connection from cell i to cell k
q, = weight of inhibitory connection from cell I to cell k

s =ds/dt. .s = s. - s...
A. Hebb'" (excitatory): As.. = hx y..

h is a time constant giving learning rate

B. Saul- (excitatory): . = - h (1 - x )y.s. + (s, - -s.).
N

h. and c are time constants, N is the number of retinal cells prolecting to cortical cell k. s . is the con-
stant sum of synaptic strength onto cell k. and 0 as x..y w 1.

C. Saul" (inhibitory): q. = -h.1 - y)yq.. + C(q . q.,).

analogous to B. but for intracortical inhibition.

D Wilson," (inhibitory): Aq,.(t) = V h(t - T)Y,(r)y.(r)dr.
a

the kernel h monotonically decreases toward zero: h(t) = e-, X a constant.
E Malsburg" (excitatory): As. =,,hx y, -(1 -,d. , hi s a time constant.

a S'./(so. +hxyJ,

s. is the constant sum as in B

F Perez et al "(excitatory) S.=hxy. -- (1-x)s..
-y =h, x y. / r(l - x,)s,..

G Amari and Takeuchi (excitatory): s. = -,,s, + hx y,.

h,. h are time constants. y, 10. 11.
H Amari and Takeuchi' (excitatory): s.. =(-,s + hx)y,,

,,. h as in G,
I. Nagano and Fujiwara" (inhibitory): lq,.(t) = ( - hx,(t - 2))y,(t),

x. and y. functions of (discrete) time, it. h positive time constants. 0 < xmn ! - wx_ a when cell i is ex-

cited. x, = 0 otherwise, and ,, - hx-,n < O.

. J Bienenstock et al.' (excitatory and inhibitory): s,, = o(y. ,,,)x.
0 a particular function of y, and 0., with 0,, being a modification threshold which is a function of ~.
a running time average of y,-see Figure 10.

K. UlIman and Schechtman" (excitatory): As,, = h(a - S,.x) = h( -y,

(v a constant norm. h a time constant.
L. Easton and Gordon" (excitatory): s,, = h(x y, - s,,),

h. a time constant.
M. Easton and Gordon" (inhibitory):q,. =h,(y.' -q.,),

h, a time constant.
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Figure 2. Schematic diagram of cortical organization. Specific inputs arrive via the X. Y, and W pathways

from LGN Layer IV contains stellate cells and some small pyramidal cells with stellate-like dendritic ar-

borizations. Simple type receptive fields (S) predominate. Other layers contain predominantly pyramidal

cells Their fields can be simple or complex (C). Smooth stellate cells can be found throughout cortex.

nrowever. and one of these is illustrated in layer II as a basket cell. Outputs from superficial layers prolect

to other cortical locations, while layers V and VI protect to superior colliculus and LGN respectively
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Figure 3. A simplified view of the possibilities for tuning of excitatory and inhibitory inputs to a cell (A)
Excitation is tuned and generates the final response tuning with little contribution from inhibition The in-
hibitory input may be strong, but it is relatively flat. Inhibition may be reduced at the optimum in order

to facilitate response. (B) Both excitation and inhibition are tuned in concert with the resoonse they share

a common optimum. Both types of inputs contribute to the final response tuning. (C) Inhibition is highly
tuned while excitation is flat. The inhibition serves to eliminate response to nonoptimal stimuli while not
blocking optimal stimuli. The excitation provides only a background drive.
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Figure 5. Von der Malsburg (1973) modeled the development of oriented RFs by assuming an excitatory
prolection from retina to cortex. (A) The 19 retinal cells were arranged in a hexagonal array, and nine stand-
ard stimuli were formed as indicated by the large or small dots which corresponded to active or inactive
retinal cells. (B) The response of one of the cortical cells is shown. At the top, the responses to each of

the nine standard stimili are drawn for three points in time: before learning, after 20 learning trials, and

after 100 learning trials took place. Initially, the cell was relatively aspecific (though biased), but by the
end had become selective for patterns #7 and #8. The dashed line shows the firing threshold, and the
dashed curve on the right shows the response after removal of inhibition The second row gives the net
afferent input for each pattern In the third row, the heights of the bars represent the synaptic strengths
from each retinal fiber onto the cell, Synapses which are active during presentations of patterns 97 and

#8 are the only remaining connections. Reproduced with permission.
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N Figure 7. An often-assumed intracortical wirng scheme =s short-range exc tat on(-- >) and longer-
• range inhibition (-- ). These connect ons can be used as a torce top poduce columnar organization,
, with cells in a column providing mutual exc tat on and cells in ne ghboring columns providing mutual

: inhibition.
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Figure 8. (A) Heggelund and Moors (1984) hypothesized that orientation selectivitv arises from overlap-

ping subfields of opposite effect. Each subfield is circular, but the partial overlap leaves an elongated ex-

cilatory zone exposed. Reproduced with permission. (B) A more complex diagram from Silito (1985) which
uses the scheme in A (upper left). In the upper right, three of these channels interact to produce a secund-
ary held with enhanced selectivity At the bottom, the inhibitory fields are large relative to the excitatory
field ("1 ") and field "2" is mixed inhibitory and faclitatory. The inhibitory interactions now include several
types of lateral projections, along with a feedback from the secondary units (triangles) to the primary cells
(circle in middle). Reproduced with permission.
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Figure 9. Modification tables for various Hebb-type rules. See text for details. PRE = presynaptic aclvi-
ty. POST = postsynaptic activity. The tables show the sign of the synaptic change: + = increase strength,
- = decrease strength. 0 = relatively little change. c and e are for inhibitory synapses, where anti-Heonoan

rules have sometimes been applied, which accounts for the - sign in the bottom right quadrant, rather
than the Hebbian + sign. Os in the first column indicate postsynaptic resonance, in which postsynaptic activity
is required to gate modifications.
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Figure 10. The o-function of equation J, after Bienenstock et al. 1982. o is a function of postsynaptic
activity and a modification threshold 0. For fixed 6.. o is positive for y<0. o is negative for 0 < y<._
and o is positive for y>0,, (see Figure 9d). However, 0,, is a function of the average postsynaptic aJctivity,
whtcn becomes very important at the steady-state. when y = 6,. Under appropriate conditions, this nonlinear
dependence of 0,, on y effectively curves the o-function back toward zero locally around the equilibrium
point (dashed curve).
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Figure 11. Increasing resistance to ocular dominance shift toward the last-opened eye after reverse-suture
at later ages, from Blakemore and Van Sluyters 1974, reproduced with permission. The reversal index
is the proportion of cells dominated by the last-opened eye. The dashed line at 0.0 is the reversal index
for a control animal, which was initially deprived until 5 weeks, but not reversed-sutured. These data show
that plasticity decreases and stability increases during the critical period. This stability could depend solely
on age, but it may also rely on visual experience, since the older reverse-sutured subjects had longer in-
itial deprivations.
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